Regulation of medullary thymic epithelial cell differentiation and function by the signaling protein Sin
نویسندگان
چکیده
Medullary thymic epithelial cells (mTECs) play an important role in T cell tolerance and prevention of autoimmunity. Mice deficient in expression of the signaling protein Sin exhibit exaggerated immune responses and multitissue inflammation. Here, we show that Sin is expressed in the thymic stroma, specifically in mTECs. Sin deficiency led to thymic stroma-dependent autoimmune manifestations shown by radiation chimeras and thymic transplants in nude mice, and associated with defective mTEC-mediated elimination of thymocytes in a T cell receptor transgenic model of negative selection. Lack of Sin expression correlated with a disorganized medullary architecture and fewer functionally mature mTECs under steady-state conditions. Additionally, Sin deficiency inhibited the expansion of mTECs in response to in vivo administration of keratinocyte growth factor (KGF). These results identify Sin as a novel regulator of mTEC development and T cell tolerance, and suggest that Sin is important for homeostatic maintenance of the medullary epithelium in the adult thymus.
منابع مشابه
A novel treatment approach for retinoblastoma by targeting epithelial growth factor receptor expression with a shRNA lentiviral system
Objective(s): Non-invasive treatment options for retinoblastoma (RB), the most common malignant eye tumor among children, are lacking. Epithelial growth factor receptor (EGFR) accelerates cell proliferation, survival, and invasion of many tumors including RB. However, RB treatment by targeting EGFR has not yet been researched. In the current study, we investigated the effect of EGFR down-regula...
متن کاملDifferential Requirement for Mesenchyme in the Proliferation and Maturation of Thymic Epithelial Progenitors
Formation of a mature thymic epithelial microenvironment is an essential prerequisite for the generation of a functionally competent T cell pool. It is likely that recently identified thymic epithelial precursors undergo phases of proliferation and differentiation to generate mature cortical and medullary thymic microenvironments. The mechanisms regulating development of immature thymic epithel...
متن کاملStabilized beta-catenin in thymic epithelial cells blocks thymus development and function.
Thymic T cell development is dependent on a specialized epithelial microenvironment mainly composed of cortical and medullary thymic epithelial cells (TECs). The molecular programs governing the differentiation and maintenance of TECs remain largely unknown. Wnt signaling is central to the development and maintenance of several organ systems but a specific role of this pathway for thymus organo...
متن کاملThymic Medullary Epithelial Cell Differentiation, Thymocyte Emigration, and the Control of Autoimmunity Require Lympho–Epithelial Cross Talk via LTβR
Thymocytes depend on the interaction with thymic epithelial cells for the generation of a diverse, nonautoreactive T cell repertoire. In turn, thymic epithelial cells acquire their three-dimensional cellular organization via instructive signals from developing thymocytes. The nature of these signals has been elusive so far. We show that thymocytes and medullary epithelial cells (MECs) communica...
متن کاملRhoB deficiency in thymic medullary epithelium leads to early thymic atrophy.
RhoB, a member of the Rho subfamily of small GTPases, mediates diverse cellular functions, including cytoskeletal organization, cell transformation and vesicle trafficking. The thymus undergoes progressive decline in its structure and function after puberty. We found that RhoB was expressed in thymic medullary epithelium. To investigate a role of RhoB in the regulation of thymic epithelial orga...
متن کامل